The Local Whittle Estimator of Long Memory Stochastic Volatility

نویسندگان

  • Clifford M. Hurvich
  • Bonnie K. Ray
چکیده

We propose a new semiparametric estimator of the degree of persistence in volatility for long memory stochastic volatility (LMSV) models. The estimator uses the periodogram of the log squared returns in a local Whittle criterion which explicitly accounts for the noise term in the LMSV model. Finite-sample and asymptotic standard errors for the estimator are provided. An extensive simulation study reveals that the local Whittle estimator is much less biased and that the finite-sample standard errors yield more accurate confidence intervals than the widely-used GPH estimator. The estimator is also found to be robust against possible leverage effects. In an empirical analysis of the daily Deutsche Mark/US Dollar exchange rate, the new estimator indicates stronger persistence in volatility than the GPH estimator, provided that a large number of frequencies is used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating long memory in volatility

We consider semiparametric estimation of the memory parameter in a model which includes as special cases both the long-memory stochastic volatility (LMSV) and fractionally integrated exponential GARCH (FIEGARCH) models. Under our general model the logarithms of the squared returns can be decomposed into the sum of a long-memory signal and a white noise. We consider periodogram-based estimators ...

متن کامل

A wavelet Whittle estimator of generalized long-memory stochastic volatility

We consider a k-GARMA generalization of the long-memory stochastic volatility (LMSV) model, discuss the properties of the model and propose a wavelet-based Whittle estimator for its parameters. Its consistency is shown. Monte Carlo experiments show favorable properties of the proposed method with respect to the Whittle estimator and a wavelet-based approximate maximum likelihood estimator. An a...

متن کامل

Wavelet Transform for Estimating the Memory Parameter in Long Memory Stochastic Volatility Model

We consider semiparametric estimation of memory parameter in long memory stochastic volatility models. It is known that log periodogram regression estimator by Geweke and Porter-Hudak (1983) results in significant negative bias due to the existence of the spectrum of non-Gaussian noise process. Through wavelet transform of the squared process, we effectively remove the noise spectrum around zer...

متن کامل

Estimating Persistence in the Volatility of Asset Returns with Signal Plus Noise Models

This paper examines the degree of persistence in the volatility of financial time series using a Long Memory Stochastic Volatility (LMSV) model. Specifically, it employs a Gaussian semiparametric (or local Whittle) estimator of the memory parameter, based on the frequency domain, proposed by Robinson (1995a), and shown by Arteche (2004) to be consistent and asymptotically normal in the context ...

متن کامل

Realized Stochastic Volatility with General Asymmetry and Long Memory∗

The paper develops a novel realized stochastic volatility model of asset returns and realized volatility that incorporates general asymmetry and long memory (hereafter the RSV-GALMmodel). The contribution of the paper ties in with Robert Basmann’s seminal work in terms of the estimation of highly non-linear model specifications (“Causality tests and observationally equivalent representations of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003